

Pulsed High Temperature Superconducting Central Solenoid For Revolutionizing Tokamaks

Fusion Review Meeting April 26-27, 2022

Bob Mumgaard, Commonwealth Fusion Systems, MIT Plasma Science & Fusion Center Elle Allen, Commonwealth Fusion Systems

Michael Segal, Commonwealth Fusion Systems

Team members and roles

Management

Bob Mumgaard, CEO and DOE PI

Brandon Sorbom VP R&D / CSO

Elle Allen, **Project Manager**

Chris Craighill, Analyst

Justin Carmichael, Sr. Mech. Engineer

Julio Colque, **Magnet Engineer**

Moses Bloom, Senior Buyer

Nathan Hirsch, Senior Buyer

Technical Team

Erica Salazar, Quench Technical Lead

Charlie Sanabria, **Magnet Engineer**

Alex Warner, Lead Manufacturing Engineer

Kristen Metcalfe, **Controls Engineer**

Shamika Naidu, Michael Segal, **Grants Administrator**

Owen Duke, Quench Research Scientist

Sam Heller, Manufacturing **Design Engineer**

David Mendoza, Lead Manufacturing **Equipment Engineer**

Commonwealth **Fusion Systems**

Key Terminologies

SPARC

 A compact, high-field tokamak that will pave the way for CFS to produce plasmas which generate more energy than they consume.

ARC

• Designed as a fusion power plant, ARC will produce fusion power onto the grid and demonstrate the science and technology required for economically competitive, mass production of fusion power.

HTS

High-Temperature Superconductor

VIPER

• The first-generation design of an industrially scalable high-current high-temperature superconductor cable

PIT VIPER

 The next-generation design of VIPER with the goal of reducing AC losses by >10x, enabling robust HTS cable in a high dB/dt environment

High-level motivation, innovation, and goals of the project

Program Objective and Goal

 Design, build and test a pulsed HTS Central Solenoid Model Coil (CSMC) that will retire all significant technical risks of a full-scale fast-ramping high-flux HTS CS for tokamak net-energy demonstrators and power plants

Motivation

- LTS CS current density & B-field are too low to drive plasma current in an economically viable device.
- This forces power plant tokamaks to be steady state, have expensive external current drives, and use risky physics

Key Innovations

- Design an HTS cable that can perform to requirements in rapidly changing magnetic fields
- Validate performance requirements of critical subsystems against SPARC operational models
- Develop a manufacturing facility that will allow the construction of a CSMC to test and engineering design specifications

The CS system, shown in orange above, is the pulsed HTS heart of the SPARC

tokamak		
Metric	State of the Art	Proposed CS
Coil Peak Field	10 T	20 T
Coil Ramp Rate	0.4 T/s	4 T/s
Coil Current Density	20 A/mm ²	85 A/mm ²

Major tasks, milestones, risks, and desired project outcomes

Low-loss Superconducting Cable and Joints

- Validate >10x AC Loss Reduction
- Prove low degradation in SPARC IxB Load Cycling
- Develop Low Resistance HTS Joints
- Demonstrate nominal survivability in structural load and fatigue testing
- Test critical current performance under SPARC structural load cases

Quench Detection

- Integrate fiber-optic quench detection in PIT VIPER and develop detection algorithm mapping software
- Register temperature rise such that no section of the PIT-VIPER cable is hotter than 150K after a shutdown trigger is executed

Manufacturing

- Design and commission automated former extrusion, tape insertion, jacketing and winding processes
- Fortify feed and sensor systems for quench detection, pulsed power, cryogenics, insulation, and low loss joints

Validation

• Test a full coiled layer in a cryogenic test stand designed for high-field, high-ramp testing at ~50 kA and 20 Kelvin to validate models and performance and test quench detection and dump rates.

Key Performance: AC Loss Reduction for HTS Conductor

Goals

 Validate 20-fold AC loss heating reduction from COMSOL models of PIT VIPER cable compared to VIPER cable in representative operational conditions

Research questions

- Do the modeled projections of AC loss heating differences match in-situ measurements at high field and ramp rates within 30%?
- Can the co-wound quench detection system meet sensing and timing requirements?

Results

- VIPER and PIT VIPER cables were instrumented and tested in a high field and ramp rate-achievable magnet at Brookhaven National Laboratory
- Calorimetry analyses were done to evaluate AC loss heating along the lengths of the samples, comparing the old and new designs
- Experiments were successful in confirming a 20-fold lower AC loss heating for PIT VIPER than VIPER
- Models matched experimental data within nominal %

Status: Complete

Key Performance: IxB and Quench Testing at SULTAN

Cable 1 "Diamondback"

(Left)

Full HTS stack – testing I_c degradation

(Right)

Split HTS stack – quench propagation

Cable 2 "Egg-Eater"

Goals

- Test PIT VIPER cables to representative IxB loading to quantify I_c degradation through cyclic fatigue loading
- Quench detection/propagation dynamic data collection in-situ

Research questions

- Do design changes from VIPER to PIT VIPER affect the IxB and structural loading tolerance at the stack level?
- Can we detect a temperature rise indicative of a quench onset sufficiently fast to prevent a jacket surface temperature of 150 K

Results

- IxB loading after 2000 cycles caused negligibly discernible I_c degradation
- Valuable quench detection data collected at 4-10K range in $^{\sim}$ Δ 0.5K granular increments in large dT/dt events
- In-situ environmental testing complete and shows no degradation to PIT VIPER hardware under IxB fatigue cycling
- Lessons learned translatable to SPARC around successful management and handling of instrumentation

Status: Complete

Automated Manufacturing for Long-Length HTS Conductor

(Above)
Previous manual build process

Recent achievement - making 100+ meter PIT VIPER cable

Automated qualification testing for jacketing processes

Goals

- Design and validate reliable manufacturing processes to enable production of PIT VIPER coil magnets at SPARC scale
- Retire as-built risk through extensive process qualification and testing

Research questions

- Will the cabling line as designed produce PIT VIPER conductor within nominal tolerances?
- Does any manufacturing process operation hold risk of reducing cable performance? What steps can be taken to minimize this?

Results

- Automated PIT VIPER cabling line designed, sourced, manufactured, installed and commissioned at CFS MFG facility
- 100+ m PIT VIPER cable produced as major milestone with ARPA-E program
- Qualification testing for jacketing process approach is nearly completed, leading to a clearly defined process
- Coil/winding pack manufacturing SOP development is at ~40%

Status: In Progress

T2M and aspirational follow-on plans

- Steady-state tokamaks carry physics risk because they require high beta, require expensive external current drive
- ► A fast-ramping HTS Central Solenoid reduces physics risk and cost *no current drive needed*
- ► Anticipated improvement in overnight and electricity cost of ~25%-50%

- CFS is on target to commission SPARC break-even tokamak in 2025
- SPARC will deploy pulsed Central Solenoid, de-risk its use for ARC commercial device
- ARC on target for commercial deployment in early 2030's

Techno-economic metrics and impact: Simple tokamaks

HTS importance and impact

- Optimizing for pulsed operation with LTS CS leads to very large, low power density machines, driving up \$/W
- Magnitude of impact seen right, comparing:
- EU-DEMO existing plasma physics, LTS magnets
- AIRES AT and RS enhanced confinement, current drive, LTS
- HTS TF and plasma physics improvements
- Original ARC study which assumes an HTS TF, LTS CS, and Lower Hybrid Current Drive (LHCD)
- HTS TF and HTS CS with no plasma physics improvements
- Clear trade between engineering complexity and physics complexity – innovations in industrial HTS magnets can now be used to simplify tokamaks

Magnet challenge

Challenge space for tokamaks: moving from LTS to HTS for performance-based cost-effectiveness

